

Published on Web 06/25/2005

Cyclotrisilenylium Ion: The Persilaaromatic Compound

Masaaki Ichinohe, Masayasu Igarashi, Kaori Sanuki, and Akira Sekiguchi*

Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba,

Tsukuba, Ibaraki 305-8571, Japan

Received May 17, 2005; E-mail: sekiguch@staff.chem.tsukuba.ac.jp

Aromatic hydrocarbons such as benzene and naphthalene are fundamental organic compounds and play important roles in organic chemistry. In contrast, the chemistry of stable metallaaromatic compounds, such as sila- and germaaromatic systems, in which skeletal atom(s) are partially replaced by heavier group 14 elements. has been developed only in the past decade.^{1,2} In 1997, we succeeded in synthesizing the cyclotrigermenylium ion, $(R_3Ge_3)^+$ (A), by the reaction of tri-tert-butylsilyl- or tri-tert-butylgermylsubstituted cyclotrigermenes with triphenylmethylium tetraarylborate, and characterized A as not only a "free" germyl cation but also a 2π electron aromatic compound composed solely of germanium in the three-membered skeleton (Chart 1).^{3a} Subsequently, we have prepared tetrakis(di-tert-butylmethylsilyl)cyclotrisilene $(1)^4$ as a possible precursor for cyclotrisilenvlium ion **B** by the oxidative removal of one 'Bu₂MeSi group. However, all of our attempts to transform 1 into the cyclotrisilenvlium ion by reaction with triphenylmethylium tetraarylborate under various conditions failed. On the other hand, the reaction of 1 with $[Et_3Si(benzene)]^+ TPFPB^-$ (TPFPB⁻ = tetrakis(pentafluorophenyl)borate) caused the demethylation and subsequent ring expansion to give the cvclotetrasilenvlium ion, $[({}^{t}Bu_{2}MeSiSi)_{3}Si^{t}Bu_{2}]^{+}$ (2), having 2π electron homoaromatic character.⁵ Despite a great interest in the silicon congeners of the cyclopropenylium ion $(R_3C_3^+)^6$ and cyclotrigermenylium ion,³ the chemistry of cyclotrisilenylium ion **B** is missing due to the synthetic difficulty associated with the lack of an appropriate precursor. We have designed a new cyclotrisilene 3, which is successfully converted to the cyclotrisilenylium ion **B**, whose synthesis and structural characteristics we report herein.

We have reported the application of dilithiosilanes⁷ for the preparation of unsaturated silicon compounds,⁸ and have now developed a synthesis for a highly crowded new cyclotrisilene, ('Bu₂-MeSi)₂SiSi₂(Si'Bu₃)₂ (3), by the reaction of 2 equiv of ('Bu₂-MeSi)₂SiLi₂with 'Bu₃SiBr₂SiBr₂Si'Bu₃ in THF (Scheme 1).⁹ The introduction of extremely bulky tri-tert-butylsilyl groups on the unsaturated silicon atoms of cyclotrisilene affected not only the endocyclic Si-Si bond lengths and the exocyclic Si-Si bond lengths but also the geometry of the Si=Si double bond (Figure 1).9 The Si=Si double bond length of 3 is 2.1612(8) Å, slightly longer than that of 1 (2.138(8) Å).⁴ The most striking difference between 3 and 1 is the geometry of the Si=Si bond; the nearly planar geometry with the 'Bu₃Si-Si=Si-Si'Bu₃ dihedral angle of 4.84(5) $^{\circ}$ for **3** is in contrast to the highly *trans*-bent structure of **1** (31.9(2) °).4 The exocyclic Si-Si bonds (av 2.4287(8) Å) are elongated compared with those of 1 (av 2.402(3) Å), due to the introduction of the extremely bulky Si'Bu₃ groups on the Si=Si bond. The newly designed cyclotrisilene 3 is found to be easily converted to cyclotrisilenylium ion B by reaction with triphenylmethylium tetraarylborate.

The cyclotrisilene **3** was reacted with Ph_3C^+ ·TSFPB⁻ (TSFPB⁻ = tetrakis[4-(*tert*-butyldimethylsilyl)-2,3,5,6-tetrafluorophenyl]bo-

Figure 1. ORTEP drawing of **3** (30% thermal ellipsoids). Hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Si1-Si2 = 2.1612(8), Si1-Si3 = 2.3762(8), Si2-Si3 = 2.3694(8), Si1-Si4 = 2.4208(8), Si2-Si5 = 2.4140(8), Si3-Si6 = 2.4254(8), Si3-Si7 = 2.4320(8). Selected bond angles (°): Si2-Si1-Si3 = 62.75(3), Si1-Si2-Si3 = 63.07(3), Si1-Si3-Si2 = 54.18(2). Selected torsional angle (°): Si4-Si1-Si2-Si5 = 4.84(5).

Chart 1

rate) in dried and degassed toluene at room temperature for 8 h to form the two liquid phases, accompanied by a color change from red-orange to dark brown. The lower layer was separated and washed with hexane to remove neutral materials to produce 4^+ , which was isolated in the form of the TSFPB⁻ salt as an extremely air- and moisture-sensitive yellow solid in quantitative yield (Scheme 2).¹⁰ The TPFPB⁻ and TTFPB⁻ (TTFPB⁻ = tetrakis-(2,3,5,6-tetrafluorophenyl)borate) salts of 4^+ could also be synthesized by the reaction of **3** with the corresponding Ph₃C⁺·Ar₄B⁻ in toluene. However, the reaction of **3** with Ph₃C⁺·TFPB⁻ (TFPB⁻ = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) did not result in any stable silyl cation species because of decomposition by the fluorine abstraction from TFPB⁻. Furthermore, isolable 4^+ salts of tetraarylborate could not survive in dichloromethane, giving a

Figure 2. ORTEP drawing of 4⁺ (30% thermal ellipsoids). Counteranion, crystal solvent molecules (toluene), and hydrogen atoms are omitted for clarity. 'Bu₂MeSi group (Si6) is disordered, and the minor part is also omitted (occupancy factor of the major part is 0.685). Selected bond lengths (Å): Si1-Si2 = 2.221(3), Si1-Si3 = 2.218(3), Si2-Si3 = 2.211(3), Si1-Si4 = 2.388(3), Si2-Si5 = 2.386(3), Si3-Si6 = 2.381(4). Selected bond angles (°): Si2-Si1-Si3 = 59.76(10), Si1-Si2-Si3 = 60.04(10), Si1-Si3-Si2 = 60.20(10).

Scheme 2

complicated mixture. This is in sharp contrast to that of the 'Bu₃-Si-substituted cyclotrigermenylium ion, which is stable not only as a salt of TFPB⁻ but also in dichloromethane solvent.³

The structure of 4⁺•TSFPB⁻ was determined by NMR spectroscopies as well as X-ray crystallography.10 Thus, the 1H NMR spectrum shows five singlet signals corresponding to two 'Bu₃Si and one 'Bu2MeSi groups in 4+, and four 'BuMe2Si groups in TSFPB⁻, which clearly suggest the formation of 4⁺ as the 1:1 salt of TSFPB⁻ by the elimination of one 'Bu₂MeSi substituent from 3. In the ²⁹Si NMR spectrum, the five signals were observed at 5.3, 43.3, 48.4, 284.6, and 288.1 ppm, and the former three signals are assigned to silicon atoms of 'BuMe₂Si, 'Bu₂MeSi, and 'Bu₃Si substituents, respectively. The relative intensity of the latter two signals at 284.6 and 288.1 ppm is 2:1, which is assigned to the cationic ²⁹Si atoms of the three-membered skeleton bearing the 'Bu₃-Si and ^tBu₂MeSi substituents, respectively. The downfield shifts of the ²⁹Si NMR resonances of 4⁺ have been well reproduced by the GIAO calculation (GIAO/B3LYP/6-311+G(2df,p)//B3LYP/ 6-31G(d)) for the model compound $(H_3Si)_3Si_3^+$ (calculated value: 300.9 ppm). The ¹H, ¹³C, and ²⁹Si NMR chemical shifts for the cyclotrisilenylium moiety are practically the same, independent not only of the counteranions (TSFPB⁻, TPFPB⁻, TTFPB⁻) but also of the solvents (benzene, toluene, chlorobenzene), indicating that 4^+ is a free silvl cation in solution.^{2c,5,11}

We have performed X-ray crystallographic analysis of a single crystal of 4^+ ·TSFPB⁻ obtained by recrystallization from toluene (Figure 2).¹⁰ The crystals contained two toluene molecules as solvent of crystallization. The closest distance between the skeletal three-membered ring silicon atoms of 4^+ and the fluorine atoms in TSFPB⁻ is 6.017(9) Å, which is beyond the range of any significant interactions. Toluene molecules are also sufficiently separated from

4⁺ (Si_{skeleton}···C_{toluene} bonds are longer than 6.7 Å). Thus, it clearly shows that the cyclotrisilenylium ion **4**⁺ is a "free" silyl cation. The three-membered ring consisting of silicon atoms forms an almost equilateral triangle (the internal bond angles: 59.76(10) to $60.20(10)^{\circ}$) with the Si–Si bond lengths of 2.211(3)-2.221(3) Å (av 2.217(3) Å), which are intermediate between the Si=Si double bond [2.1612(8) Å] and the Si–Si single bond [2.3694(8) and 2.3762(8) Å] of the precursor cyclotrisilene **3**. In addition, the three substituent silicon atoms (Si4–Si6, Si86) are in the same plane as the three-membered ring, within 0.39 Å. Thus, we have established the first synthesis and characterization of a persilaaromatic compound.¹²

Supporting Information Available: Experimental procedures and spectral data for 3, 4^+ ·TSFPB⁻, 4^+ ·TPFPB⁻, and 4^+ ·TTFPB⁻, and tables of crystallographic data including atomic positional and thermal parameters for 3 and 4^+ ·TSFPB⁻ (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Reviews on metallaaromatic compounds of heavier group 14 elements: (a) Lee, V. Ya.; Sekiguchi, A.; Ichinohe, M.; Fukaya, N. J. Organomet. Chem. 2000, 611, 228. (b) Tokitoh, N. Acc. Chem. Res. 2004, 37, 86.
- (3) (a) Sekiguchi, A.; Tsukamoto, M.; Ichinohe, M. Science 1997, 275, 60.
 (b) Ichinohe, M.; Fukaya, N.; Sekiguchi, A. Chem. Lett. 1998, 1045. (c) Sekiguchi, A.; Fukaya, N.; Ichinohe, M.; Ishida, Y. Eur. J. Inorg. Chem. 2000, 1155.
- (4) Ichinohe, M.; Matsuno, T.; Sekiguchi, A. Angew. Chem., Int. Ed. 1999, 38, 2194.
- (5) Sekiguchi, A.; Matsuno, T.; Ichinohe, M. J. Am. Chem. Soc. 2000, 122, 11250.
- (6) (a) Breslow, R. J. Am. Chem. Soc. 1957, 79, 5318. (b) Breslow, R.; Yuan, C. J. Am. Chem. Soc. 1958, 80, 5991. (c) Breslow, R. Pure Appl. Chem. 1971, 28, 111.
- (7) Sekiguchi, A.; Ichinohe, M.; Yamaguchi, S. J. Am. Chem. Soc. 1999, 121, 10231.
- (8) (a) Ichinohe, M.; Arai, Y.; Sekiguchi, A.; Takagi, N.; Nagase, S. Organometallics **2001**, 20, 4141. (b) Sekiguchi, A.; Izumi, R.; Lee, V. Ya.; Ichinohe, M. J. Am. Chem. Soc. **2002**, 124, 14822. (c) Nakata, N.; Izumi, R.; Lee, V. Ya.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. **2004**, 126, 5058.
- (9) In this reaction, half the amount of dilithiosilane acts as reducing agent to form tetrakis(di-*tert*-butlmethylsilyl)disilene as a side product. For experimental details, spectral data, and X-ray data of 3, see Supporting Information.
- (10) In the crystal of 4⁺·TSFPB⁻·(toluene)₂, the disorder was observed for 'Bu₂MeSi group in cyclotrisilenylium ion, one 'BuMe₂Si group in TSFPB⁻, and one toluene molecule, and structural refinement was carried out under the appropriate restricted conditions. For experimental procedure, spectral data, and X-ray data of 4⁺·TSFPB⁻, see Supporting Information.
 (11) For silyl cations: (a) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. *Science* **1993**, 260, 1917. (b) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1993**, 260, 1917. (c) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. C. Science **1918**, 2018
- (11) For silyl cations: (a) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science **1993**, 260, 1917. (b) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. Science **1993**, 262, 402. (c) Lambert, J. B.; Zhao, Y. Angew. Chem., Int. Ed. Engl. **1997**, 36, 400. (d) Müller, T.; Zhao, Y.; Lambert, J. B. Organometallics **1998**, 17, 278. (e) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhimann, B. J. Am. Chem. Soc. **1999**, 121, 5001. (f) Kim, K. C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. Science **2002**, 297, 825. (g) Nakamoto, M.; Fukawa, T.; Sekiguchi, A. Chem. Lett. **2004**, 33, 38. See also refs 2c and 5.
- Sekiguchi, A. *Chem. Lett.* 2004, *33*, 38. See also refs 2c and 5.
 (12) The aromaticity of 4⁺ is also supported by the negative value of nucleus-independent chemical shift (NICS(1): -12.75) for the model compound (H₃Si)₃Si₃⁺.

JA053202+